Comparative Effect of Cisplatin, Spiroplatin, Carboplatin, Iproplatin and JM40 in a Human Myeloid Clonogenic Assay

WILFRIED A. SCHROYENS,* JEFF B. MEEKER,† PIERRE DODION,* PIERRE A. STRYCKMANS* and MARCEL ROZENCWEIG†

*Service de Médecine et Laboratoire d'Investigation Clinique H.J. Tagnon, Institut Jules Bordet, Centre des Tumeurs, Université Libre de Bruxelles, Brussels, Belgium and †Bristol-Myers Company, Pharmaceutical Research and Development Division, Wallingford, Connecticut, U.S.A.

Abstract—The relative toxicities of cisplatin and its analogs, spiroplatin, carboplatin, iproplatin and JM40, were tested against normal human progenitor myeloid cells (CFU-GM) in a clonogenic assay. Cells obtained from five bone marrows were incubated for 60 min with various drug concentrations and plated. The mean inhibitory concentrations for 50% of the bone marrow colonies (IC50) were 15.6 µg/ml for cisplatin, 0.4 µg/ml for spiroplatin, 56.3 µg/ml for carboplatin, 36.3 µg/ml for iproplatin and 179.5 µg/ml for JM40. Ratios of the IC50s of the analogs with cisplatin as reference drug closely followed the corresponding ratios of the clinical maximum tolerated doses. This correlation between the CFU-GM assay results and the clinical myelotoxicity suggests that the assay is adequate for predicting myelotoxicity in vitro and selecting in vitro drug concentrations for the human tumor clonogenic assay.

INTRODUCTION

DIFFERENT experimental approaches, including the clonogenic assay, have been tried to determine the cytotoxicity of chemotherapeutic agents. In the clonogenic assay developed by Pike and Robinson, marrow progenitor cells (CFU-C) differentiate into colonies of mature granulocytes, eosinophils, monocytes and macrophages and can be adequately grown in agar [1]. Widely used to study human hematopoiesis, this assay may be useful for evaluating the relative myelosuppressive effect of cytotoxic drugs.

Cisplatin has proven to be a mainstay of the treatment of several human neoplasms. The major toxic effect limiting its clinical use is nephrotoxicity. However, with proper hydration and diuresis the kidneys can be partially protected so that the doselimiting toxicity becomes myelosuppression [2].

Another approach to circumventing cisplatin nephrotoxicity has been the development of analogs. Three analogs, carboplatin, iproplatin and JM40,

showed in phase I studies minimal or no renal toxicity at high doses and a level of antitumor activity that was equal to or in excess of that of cisplatin and myelosuppression [3–5]. In other trials, spiroplatin, a fourth analog, also produced dose-limiting myelosuppression [6]. The present study was designed to investigate and compare the relative cytotoxic effect of cisplatin and these four analogs on human bone marrow myeloid stem cells in a clonogenic assay and to evaluate its predictive value for the clinic.

MATERIALS AND METHODS

Marrow samples

Four milliliters of human bone marrow were taken from the posterior iliac crest of five healthy volunteers. Each sample was anticoagulated with 10 U/ml heparin (Upjohn Company, Kalamazoo, Michigan). Mononuclear cells were separated at room temperature by Ficoll/Hypaque density centrifugation at 800 \mathbf{g} for 20 min. The cells at the interface were collected, washed twice and resuspended in Dulbecco's medium enriched with 20% fetal calf serum (FCS) (Gibco, Paisley, U.K.). Approximately 3×10^6 mononuclear cells per ml of bone marrow were retrieved.

Accepted 17 March 1988.

Address for correspondence and reprint requests: W. Schroyens, Zentrum für Innere Medizin, Department of Hematology and Oncology, Justus-Liebig-Universität, Klinikstrasse 36, 6300 Giessen, F.R.G.

Drugs

Cisplatin and its four analogs were obtained from Bristol-Myers Co., Wallingford, Connecticut. Drug structures are illustrated in Fig. 1. Each drug was dissolved in calcium and magnesium free Hank's balanced salt solution (HBSS) (Gibco, Paisley, U.K.), to give the appropriate range of concentrations from 10^{-3} to 10^{-6} M for all but spiroplatin which was tested from 10^{-4} to 10^{-7} M. Preliminary experiments defined the concentration inducing a 100% cell kill for each drug.

Drug testing

 5×10^5 marrow cells were incubated for 60 min at 37°C in a 2 ml final volume of culture medium enriched with 20% fetal calf serum and the various drug concentrations. This was done in a controlled atmosphere containing 7.5% CO₂ and 100% H₂O. The incubations were terminated by adding a 10-fold excess of Dulbecco's medium at 4°C. The cells

Cisplatin (CDDP) cis - diammine - dichloroplatinum II MW 300

$$\begin{array}{|c|c|c|c|c|}\hline & CH_2 - NH_2 \\ \hline & CH_2 - NH_2 \\ \hline & Pt & O \\ \hline & O \\ \hline & SO_2 \\ \hline \end{array}$$

Spiroplatin (TNO - 6) 1,1 - diamminomethylcyclohexane sulfate platinum II MW 419

$$\begin{array}{c|c}
NH_3 & O - C \\
NH_3 & O - C \\
0 & O
\end{array}$$

Carboplatin (CBDCA) cis-diammine 1;1-cyclobutanedicarboxylate platinum II MW 371

$$\begin{array}{c} CH_3 \\ CH_3 - CH - NH_2 \\ CH_3 - CH - NH_2 \\ CH_3 - CH - NH_2 \end{array} \begin{array}{c} OH \\ Pt \\ OH \end{array}$$

Iproplatin (CHIP) cis-dichloro-trans-dihydroxybis-isopropylamine platinum IV MW 418

JM 40 cis - ethylene - diammino - malonate - platinum (II) MW 357

Fig. 1. Structures of the five platinum analogs used in the experiments.

were then centrifuged at 800 **g** for 10 min. The pellets were resuspended in culture medium and plated according to a modified Pike and Robinson technique as previously reported [7].

Culture system

Human placental conditioned medium (HPCM) was added to the soft agar for stimulating colony growth. Cells were resuspended in 3.5 ml of culture medium enriched with 20% FCS, 10% HPCM and 0.28% agar. One milliliter of the suspension was aliquoted into 35 mm plastic Petri dishes and incubated for 7 days at 37°C with a 7% CO₂ humidified atmosphere. Colonies, defined as groups of more than 40 cells, were counted with an Olympus inverted microscope at 40× magnification. The experiments were set up in triplicate with the necessary controls.

Data analysis

A minimum of 30 colonies per control plate was required for evaluation. Colony counts of the three plates for a particular drug concentration were averaged to obtain one data point. The drug concentrations inhibiting growth by 50% were calculated as inverse regression estimates with linear regression on the logarithmic concentration for each series of experiments. For this calculation, nonlinear points were eliminated. For those cases in which only two concentrations remained after nonlinear points were eliminated, the inverse regression was still done, realizing that no estimate of variability could be obtained and linearity could no longer be checked. It was felt that the effect of any potential bias would be minor, particularly on the reported means. This affected only cisplatin and carboplatin for the human progenitor myeloid cells. The geometric means and standard errors were then calculated based on a log-normal distribution [8].

RESULTS

The mean number of control CFU-C colonies in the triplicates ranged from 108 to 324 with a median value of 195. Sensitivity to a given drug varied among the five normal bone marrows. The 10^{50} (drug concentration capable of inhibiting 50% growth) for each drug is listed in Table 1. Cisplatin induced 50% cell kill at an average dose of 5.2×10^{-5} M, an 10^{50} concentration similar to iproplatin. Only one analog, spiroplatin, proved more toxic. Carboplatin reached the same level of inhibition at a dose three times that of cisplatin. JM40, the least myelotoxic drug in the system, was approximately 10 times weaker than cisplatin.

With cisplatin as reference agent, the $1C_{50}$ s expressed in μ g/ml as listed in Table 1 were used to establish ratios giving the relative toxicities of the platinum analogs (Table 2). The clinical maximum

Table 1. Cytotoxic effect of cisplatin and four analogs on human bone marrow cells

Drug	$(\text{moles} \times 10^{-5})$	IC ₅₀ (µg/ml)	
Cisplatin	5.2 ± 0.05	15.6 ± 1.5	
Spiroplatin	0.1 ± 0.01	0.4 ± 0.04	
Carboplatin	15.2 ± 1.6	56.3 ± 5.9	
Iproplatin	8.7 ± 2.0	36.3 ± 8.3	
JM40	50.3 ± 14.6	179.5 ± 52.1	

 $_{1G_{50}}$: concentration inducing a 50% cell kill. Values: mean \pm S.E. expressed in moles and $\mu g/ml$.

tolerated doses (MTDs) derived from data in the literature were used to calculate corresponding ratios for clinical and *in vitro* comparison. The comparison of MTD ratios with 1050 ratios expressed in moles was slightly less concordant than the comparisons with 1050 ratios expressed in µg/ml. Our results showed that the *in vitro* and clinically based ratios correlated amazingly well.

DISCUSSION

The differential sensitivities of normal human myeloid progenitor cells to cisplatin and four analogs were studied with an *in vitro* CFU-assay.

A major focus of interest in the evolution of cancer chemotherapy in recent years has been the development of new drugs with greater tumor specificity and less normal tissue toxicity. Myelosuppression has been recognized as the principal doselimiting factor for nearly all of the first and second generation drugs [9]. However, most of the toxicity research has focused not on myelosuppression but on the specific organ toxicity associated with the first generation. Thus, investigations into the side-effects of the new platinum compounds have centered on renal toxicity [10].

The experimental model we used appeared attractive for estimating clinical myelosuppression. However, in a previous study, Dodion *et al.* [11] showed that the predictability of the test was insufficient for four anthracyclines.

Incorrect predictions may result from variability

in the data due to biotransformation or other pharmacokinetic parameters that may vary from one agent or group to another. In the clinic, thrombopenia is generally observed starting at 100 mg/m² of cisplatin, while iproplatin and carboplatin produce a similar effect at the much higher doses of 300 and 400 mg/m², respectively. The maximum tolerated doses for spiroplatin and JM40 are 30 mg/m² and 1200 mg/m². The clinical maximum tolerated dose ratios of the platinum analogs to cisplatin correlate surprisingly well with the corresponding in vitro 1050 ratios (Table 2). In the case of spiroplatin, the most potent analog, the clinical maximum tolerated dose is higher than would have been predicted from the in vitro data. This could be explained by the fact that the in vitro Concentration × Time Product (AUC) to which the bone marrow cells were exposed was the same for all drugs, in contrast to the small clinical AUC of spiroplatin in comparison e.g. to cisplatin. Such variation in the kinetics might account for the apparent discrepancy in the case of spiroplatin. Another approach to comparative studies is in fact the use of in vitro drug concentrations based on clinical plasma decay curves (AUC).

The CFU assay has been suggested as a biological reference model for the design and interpretation of chemosensitivity studies in the human tumor clonogenic assay [12]. Our results suggest that such experiments seem warranted for cisplatin derivatives.

Results obtained with a leukemic cell line, HL60, differed significantly from those obtained with the bone marrows (results not shown). This would indicate that HL60 is not an appropriate alternative for human bone marrow in these experiments.

In vitro drug concentrations for tumor sensitivity tests could be selected based on their in vitro toxicity in the CFU assay as we did in a companion paper [13]. This could indeed minimize the risk of false in vitro sensitive results originating from testing at too high doses, and of false in vitro resistant results from testing at too low doses [14]. Since our experiments showed a good correlation between 1050s obtained in the CFU assay with normal human bone marrow and the clinical maximum tolerated doses, we

Table 2. Ratios of the in vitro 1C50s of the analogs in µg/ml using cisplatin as reference drug and corresponding ratios of the clinical maximum tolerated dose (MTD) with cisplatin as reference drug

	v		
Drug	Ratio based on IC ₅₀ (µg/ml)	Clinical MTD (mg/m²)	Ratio based on clinical MTD
Cisplatin	1	100	1
Spiroplatin	0.03	30	0.3
Carboplatin	3.6	400	4
Iproplatin	2.3	300	3
JM40	11.5	1200	12

believe that comparative as well as individual drug studies might be promising for analyzing and predicting myelotoxicity. **Acknowledgements**—The authors acknowledge the technical assistance of Mrs. M. Mattelaer.

REFERENCES

- 1. Pike BL, Robinson WA. Human bone marrow colony growth in agar-gel. J Cell Phys 1970, 76, 77-84.
- 2. Ogawa M, Gale GR, Keirn SS. Effects of cis-diamminedichloroplatinum (NSC 119875) on murine and human hacmopoietic precursor cells. Cancer Res 1975, 35, 1398–1404.
- 3. Creaven PJ, Madajewicz S, Pendyala L et al. Phase I clinical trial of cis-dichloro-transdihydroxy-bis-isopropylamine platinum (IV) (CHIP). Cancer Treat Rep 1983, 67, 795-800.
- 4. Calvert AH, Harland SJ, Newell DR et al. Early clinical studies with cis-diammine-1,1-cyclobutane dicarboxylate platinum II. Cancer Chemother Pharmacol 1982, 9, 140-147.
- 5. Rose WC, Schurig JE, Huftalen JB, Bradner WT. Antitumor activity and toxicity of cisplatin analogs. Cancer Treat Rep 1982, 66, 135-146.
- Weiss GR, Kisner DL, Kuhn JG et al. New anti-cancer drugs. In: Pinedo HM, Chabner BA, eds. Cancer Chemotherapy: 1983 EORTC Cancer Chemotherapy Annual. Amsterdam, Elsevier, 1983, 152-154.
- 7. Bron D, Dodion P, Rozencweig M et al. Quantitation of differential sensitivity of normal myeloid progenitor cells to anthracene derivatives. Invest New Drugs 1986, 4, 11-18.
- 8. Bliss CI. Statistics in Biology, Vol. 1. New York, McGraw-Hill, 1967, 128, 137-138.
- 9. Marsh JC. The effects of cancer chemotherapeutic agents on normal hematopoietic precursor cells: a review. Cancer Res 176, 36, 1853-1859.
- Egorin MJ, Van Echo DA, Tipping SJ et al. Pharmacokinetics and damage reduction of eis-diammine (1,1-cyclobutane-dicarbonate) platinum in patients with impaired renal function. Cancer Res 1984, 44, 5432-5537.
- 11. Dodion P, Sanders C, Rombaut W et al. Effect of daunorubicin, carminomycin, idarubicin and 4-demethoxydaunorubicinol against human normal myeloid stem cells and human malignant cells in vitro. Eur J Cancer Clin Oncol 1987, 23, 1909–1914.
- 12. Park CH, Wiernik PH, Morrison FS, Amare M, Van Sloten K, Maloney TR. Clinical correlations of leukemic clonogenic cell sensitivity assessed by *in vitro* continuous exposure to drugs. *Cancer Res* 1983, 43, 2346–2349.
- 13. Schroyens WA, Dodion PF, Rozencweig M. Comparative effect of cisplatin, spiroplatin, carboplatin and iproplatin in a human tumor clonogenic assay. Submitted.
- 14. Hug V, Thames H, Spitzer G, Blumenschein GR, Drewinko B. Normalization of in vitro sensitivity testing of human clonogenic cells. Cancer Res 1984, 44, 1236-1240.